
TOWARD A COOPERATIVE NETWORK 
OF TIME-SHARED COMPUTERS 

Thomas Marill 

Computer Corporation of America, Cambridge, 
Massachusetts 

and 

Lawrence G. Roberts 

MIT, Lincoln Laboratory,* Lexington, Massachusetts 

INTRODUCTION: 
NETWORKS AND THE PROBLEM OF 
COMPUTER INCOMPATIBILITY 

Incompatible machines represent an old problem 
in the computer field. Very often, because of com­
puter incompatibility, programs developed at one in­
stallation are not available to users of other installa­
tions. The same program may therefore have to be 
rewritten dozens of times. 

Assume, for example, that a program which per­
forms a syntactic analysis of natural English sen­
tences has been developed for a certain computer, Y. 
Such a program would be of interest to workers in 
the fields of natural-language inputs to computers, 
mechanical translation and linguistics, information 
retrieval, command and control, and a number of 
other ancillary disciplines. Unfortunately, the pro­
gram would be available only to those who had direct 
access to Y (or to a computer compatible with Y ) ; 

* This work was supported in part under a subcontract of 
MIT, Lincoln Laboratory, which is operated with support 
from the Advanced Research Projects Agency. 

users of other installations would have to recode the 
program for their own computers, at a cost per com­
puter comparable to the cost of the original pro­
gramming development. Viewed on a nationwide 
scale, such inefficiencies can be enormously expen­
sive. 

The time-honored remedies for computer incom­
patibility have been the following. 

1. Use identical computers. Thus, for 
example, the use of two identically 
modified IBM 7094's at Project MAC 
and at the MIT Computation Center 
made possible the development of the 
Compatible Time-Sharing S y s t e m 
(CTSS), allowing programs written for 
one system to be run on the other. 

2. Write programs in a high-level lan­
guage for which compilers exist on 
different machines. Thus, a given 
FORTRAN source program can be 
compiled for and run on a large num­
ber of different computers. 

425 



426 PROCEEDINGS—FALL JOINT COMPUTER CONFERENCE, 1966 

Unfortunately, these remedies have worked quite 
badly in the past and will probably work as badly in 
future time-sharing environments. Regarding remedy 
(1), there is no indication that the proliferation of 
hardware is ending. It is not difficult to find examples 
of situations where, even within a single organiza­
tion, incompatible new computers are being added 
to existing ones, requiring duplication of program­
ming efforts. Regarding remedy (2) , one finds that 
new computer languages are developed daily. It has 
been estimated that the number of time-sharing in­
stallations is roughly equal to the number of lan­
guages offered among them. 

Thus we see no particular reason to believe that 
the old remedies will work better in the future than 
in the past. The possibility exists, however, that 
the technique of computer networking will con­
tribute to the solution of the problem. Since time­
sharing systems, by their nature, are designed to be 
operated" remotely on a real-time basis, we can 
envision the possibility of the various time-shared 
computers communicating directly with one another, 
as well as with their users, so as to cooperate on the 
solution of problems. To return to our earlier ex­
ample, if a user of machine X wanted to use, as part 
of a larger program, the syntactic-analysis routine 
running on computer Y, this larger program would 
communicate the sentence to be analyzed to Y, cause 
the syntactic-analysis program to run on Y, accept 
the results, and go on running at X. 

Such an approach would circumvent the problem 
of incompatible machines by allowing all programs 
to run on their home computer. 

A program which ran on computer Y would not 
need to be rewritten or recompiled for computer X 
in order to be part of a system running on X; the 
program would run on Y, as always, and its output 
would be communicated to X at the proper time. 

Within a computer network, a user of any cooper­
ating installation would have access to programs 
running at other cooperating installations, even 
though the programs were written in different lan­
guages for different computers. This forms the prin­
cipal motivation for considering the implementation 
of a network. 

The establishment of a network may lead to a 
certain amount of specialization among the cooper­
ating installations. If a given installation, X, by rea­
son of special software or hardware, is particularly 
adept at matrix inversion, for example, one may ex­
pect that users at other installations in the network 

will exploit this capability by inverting their matrices 
at X in preference to doing so on their home com­
puters. 

Carrying this train of thought one step further, it 
may develop that small time-shared computers will 
be found to be efficiently utilized when employed 
only as communication equipment for relaying the 
users' requests to some larger remote machine on 
which the substantive work is done. Such smaller 
installations might then be considered to be "retail 
outlets" for the "wholesale computer power" provid­
ed by the giant machines.* 

SOFTWARE CONSIDERATIONS 

The Elementary Approach 

We will first discuss an elementary approach to 
the problem of forming computer networks. This 
approach certainly does not represent the best alter­
native, but it has the advantage as a point of depar­
ture of being by far the simplest, since it allows a 
network of existing time-sharing systems to be 
formed without any appreciable change to hardware 
or monitor software. 

Using this approach, the only requirement a sys­
tem must meet to be eligible for membership in the 
network is the following: the time-sharing monitor 
must allow user programs to communicate with two 
terminals. If this requirement is uniformly fulfilled, 
then the network can be implemented without 
change to the monitor at any installation, by the 
simple expedient of letting each computer in the net­
work look upon all the others as though they were 
its own remote-user terminals. 

Figuratively speaking, we may think of the com­
puter-to-computer link in such a network as being 
the result of removing a user terminal from its cable 
on computer X, removing a user terminal from its 
cable on computer Y, and splicing the two cable-
ends together. 

* It may be pointed out that the type of network de­
scribed above is not the only possible type. One might alter­
nately consider a network in which programs are shipped 
from one computer to another. Such a program-shipping 
network could be used for load-sharing: When the queue of 
programs waiting to run on a given computer becomes too 
long, certain of the programs are shipped off to another 
computer where quicker service is available. The establish­
ment of a program-shipping network seems to us to be an 
exceedingly difficult undertaking and will not be considered 
in the present paper. Instead, we restrict ourselves entirely 
to the type of network in which all programs run exclusively 
on their home computer, that is, on the computer they were 
programmed for. 



COMMUNICATIONS NETWORK TO TIE TOGETHER EXISTING COMPUTERS 427 

Such a network operates as follows. The user 
dials up his home computer, CH, from a console. He 
logs in normally by transmitting characters from his 
console to the monitor MH. He sets up his user pro­
gram PH and starts this program. PH, through the 
second channel available to it, logs in at the remote 
computer CR, by transmitting the correct sequence 
of symbols to the remote monitor MR. (Note that it 
is the user's program PH, not the monitor MH, which 
has the responsibility for doing this.) The remote 
monitor MR takes the proper actions and communi­
cates with PH that the actions have been taken. PH 

accepts these messages. PH then communicates with 
MR to set up the desired program PR at the remote 
computer; it then runs PR and transmits and accepts 
data from it, until it is done. PH then logs out by 
communicating with MR. PH continues on its own 
until done. The user logs out by communicating 
with MH. 

Note that neither MH nor MR was required to 
behave in an unusual fashion. The monitors did 
what they always do. The only requirement, as stat­
ed earlier, was that the user program PH be allowed 
to communicate with two terminals, its own user ter­
minal and the remote computer. Most present-day 
monitors provide for such a capability. 

There are a number of problems with this ele­
mentary approach. First, while it is true that most 
present-day monitors allow the user program to 
communicate with two terminals, they typically al­
low this communication to occur only at very low 
data-rates. This is because the multiple remote-ac­
cess lines which monitors are designed to service are 
teletypewriter lines, operating at teletypewriter data-
rates, i.e., at rates on the order of 100 bits per sec­
ond. In the following section we discuss alternative 
approaches to circumvent this difficulty. 

Second, the elementary approach leads to a net­
work which in many circumstances is quite incon­
venient. One reason is that the responsibility for 
making the network operate rests on the calling pro­
gram PH. This program must handle the communi­
cation with the remote monitor, possible code con­
version, error checks, etc., without any assistance 
from the monitor. Another reason is that there is no 
way of "reaching" remote programs other than those 
which take all inputs from, and give all outputs to, a 
user terminal. Ways of dealing with this second class 
of problems will be discussed below under the head­
ings of Message Protocol, Auxiliary Software, and 
The Problem of Displays. 

Achieving Higher Data-Rates 

We have seen how an elementary network could 
be achieved without changing existing hardware or 
monitor software. This elementary network operates 
at teletype data-rates, i.e., at rates on the order of 
100 bits per second. We consider next how to 
achieve higher data-rates while still preserving, as 
much as possible, the hardware and software of ex­
isting time-sharing systems. Two possibilities are 
open to us: 

1. The limitation on the rate at which bits are 
transmitted to and from teletypewriter stations is im­
posed by the speed of the teletypewriters, not by the 
capabilities of the hardware interfacing the remote 
lines to the computer. Trivial modifications to this 
communications interface will frequently allow the 
bit-rate to be increased considerably over the tele­
type rate. An improvement by a factor of 10, lead­
ing to a rate of approximately 1000 bits per second, 
should not strain any existing hardware. Such a 
change in the hardware does not require any change 
in the monitor software, provided of course, that we 
do not exceed the monitor's capacity for accepting 
characters. 

2. The channels considered up to now have been 
command-plus-data channels which carry commands 
(from user to monitor) as well as data (from user 
to user-program and vice versa). Since commands 
come at unpredictable times in the data-stream, each 
character transferred over a command-plus-data 
channel must be analyzed by the monitor. Not so 
for the case of data-only channels, such as those 
which transfer information between a user program 
and a disc file or a magnetic tape. The data-flow 
over a data-only channel contains no information 
addressed to the monitor itself; hence the informa­
tion need not be analyzed by the monitor and can 
be transferred at higher rates. 

This fact suggests that data-rates higher than 
those discussed up to now could be achieved by us­
ing data-only channels as computer-to-computer 
links; such channels are already available in existing 
time-sharing systems, and could be modified for net­
working applications. 

However, data-only links would not be sufficient 
for a network, since it is necessary to transmit com­
mands to the monitors (in order to log in, for exam­
ple); primary data-only links would have to be 
supplemented by secondary command-plus-data 
channels. 



428 PROCEEDINGS—FALL JOINT COMPUTER CONFERENCE, 1966 

Thus, a possible alternative technique for achiev­
ing increased data-rates without greatly increasing 
the burden on the monitor would be to use high-rate 
data-only links, supplementing these by low-rate 
command-plus-data channels over which communi­
cation to the remote monitor could take place. 

Message Protocol 

We have seen how an elementary network, oper­
ating at low data-rates, could be implemented with 
virtually no changes to existing hardware or soft­
ware, and how somewhat higher data-rates could al­
so be achieved without radical redesign. However, 
the networks created by the principles discussed so 
far have great shortcomings, particularly since they 
require the user program initiating the call to the 
remote computer to do all the work associated with 
carrying out the transmissions. This can be a very 
greet inconvenience; it would be much more desira­
ble to have the monitor take over some of the 
chores. 

The first step in that direction is the establishment 
of a message protocol, by which we mean a uniform 
agreed-upon manner of exchanging messages be­
tween two computers in the network. 

The primary reasons for considering the establish­
ment of a message protocol are the following: 

1. By formatting transmissions into mes­
sages, and including a check-sum with 
each message, transmission errors can 
frequently be detected. If detected, 
the messages can automatically be re­
transmitted in accordance with the 
protocol. 

2. If an existing command-plus-data link 
is used, certain characters or strings 
of characters are normally given spe­
cial consideration by the monitor. 
Hence, binary data cannot efficiently 
be sent over such a link without some 
extra provision which specifies that a 
certain block is to be regarded as 
binary information. The protocol pro­
vides for such an extra provision and 
thereby allows binary information to 
be transmitted efficiently. 

As will be seen below, work is proceeding on an 
experimental network between the TX-2 computer 
at Lincoln Laboratory and the Q-32 computer at 

System Development Corporation. The protocol to 
be used in this network is given in the Appendix. 
This protocol will be handled as an extension of the 
two monitors, which will automatically take care of 
error-checks, retransmissions, and acknowledgments. 

While the implementation of a message protocol 
is a great convenience to the user, a certain caution­
ary remark may be in order. If a protocol is adhered 
to between two computers in the network, say A 
and B, it is not absolutely necessary that the same 
protocol be established between C and D, nor even 
between A and D. Since the motivation for the net­
work is to overcome the problems of computer in­
compatibility without enforcing standardization, it 
would not do to require adherence to a standard 
protocol as a prerequisite of membership in the net­
work. Instead, the network should be designed for 
maximum flexibility. If a protocol which is good 
enough to be put forward as a standard is designed, 
adherence to this standard should be encouraged but 
not required. 

Auxiliary Software 

Let us assume that we have a command-plus-data 
channel over which computers X and Y communi­
cate, and that a message protocol has been ar­
ranged. Consider now the auxiliary software neces­
sary to make use of the networking capability. 

Let us say that X is the home computer (the 
computer on which the user is logged in) and that Y 
is the remote computer. There are two types of pro­
grams on Y that are of interest to the user of X: 

1. "Total program packages," that is to 
say those programs all of whose inputs 
are typed in by the user and all of 
whose outputs are typed out to the 
user. An example of such a package 
is an on-line engineering-calculation 
program. 

2. Subroutines, that is to say those 
programs which are called by other 
programs, whose arguments are trans­
mitted at time of call, and which re­
turn control to the calling program 
together with the result of the calcula­
tion. 

Consider now the auxiliary software that needs to 
be provided at the remote computer Y in order for 
the two types of programs to be usable remotely 
from X. 



COMMUNICATIONS NETWORK TO TIE TOGETHER EXISTING COMPUTERS 429 

• To use a total program package remote­
ly, no additional software is necessary 
at Y. 

• To use a subroutine remotely, a user 
program running on Y must be pro­
vided. This user program is an inter­
face between the link and the desired 
subroutine. The user program accepts 
type-in from the link, calls and runs 
the desired subroutine, and types out the 
answer to the link. A separate user 
program could be provided for each 
subroutine of interest; or else a common 
program could be written which is 
given the arguments and the name of 
the desired subroutine. 

Consider next the auxiliary software that needs to 
be provided at the home computer X. For each re­
mote program that is to be used, code needs to be 
written for calling up the remote computer, logging 
in, calling up the program, transferring data, and 
logging out. This code may as well be public, so as 
to be available to all users of X. Thus, if the pro­
grams ABLE and BAKER running on computer Y 
are to be used remotely from X, programs PSEU-
DOABLE and PSEUDOBAKER will be provided 
on X. These PSEUDO-programs will be called by 
the user-programs of X in the same manner as ordi­
nary public programs at X. Since ABLE and 
BAKER run on the same computer, Y, PSEUDOA­
BLE and PSEUDOBAKER will have a great deal 
of overlap (the dial-up and log-in routines for Y, 
for example). Hence PSEUDOABLE and PSEU­
DOBAKER will probably be written in such a way 
as to employ a common subroutine which handles 
all communications with Y. Given this routine, 
PSEUDOABLE and PSEUDOBAKER are trivial to 
write. 

The Problem of Displays 

There are certain special problems associated 
with the remote use of display programs. The first of 
these deals with the fact that display programs fit 
into neither of the two program categories discussed 
above. Display programs are not total program 
packages, since they do not type out their results; 
nor are they subroutines in the sense defined, since 
they do not return their results to the calling pro­
gram, but instead send these results to a display-
generator. 

In order for an existing display program to be 
used remotely, therefore, it is not sufficient to intro­
duce auxiliary software as user programs. A change 
to the monitor is required. 

What is required is (1) that the monitor recog­
nize the situation in which the user who is calling up 
the display program is not an ordinary user but 
rather a remote computer and (2) that it take spe­
cial action in this case regarding the display infor­
mation. The special action required is to ship the 
display information out over the link rather than to 
the local display. If such a monitor modification is 
made, existing user programs involving displays can 
then be called from the remote computer, and the 
display information will be sent to the home com­
puter. 

The second problem arises from the fact that 
there is no agreed-upon language for transmitting 
displays. The handling of displays in a time-sharing 
system is usually built right into the time-sharing 
monitor. Unfortunately, every monitor handles dis­
plays differently, with the result that each computer 
in the network must be programmed to understand 
the display languages of the others. This can certain­
ly be done, but it is inconvenient.* 

It might be pointed out that if we solve the two 
problems stated above in a satisfactory manner, so 
that display programs can be used remotely in a net­
work of time-shared computers, we will ipso facto 
have solved also another problem of current interest, 
namely the problem of small satellite computers 
used as remote display consoles. In fact, there is no 
reason why satellite computers and network com­
puters need be treated differently. A satellite com­
puter also must log in, run a program, and have 
display information transmitted back down the com­
munication channel. 

HARDWARE CONSIDERATIONS 

There exists a multitude of hardware problems 
that must be considered when a computer network 
is planned. Decisions must be made regarding type 
and speed of communication channels, character 
size, serial versus parallel transmission, synchronous 
versus asynchronous transmission, full-duplex versus 
half-duplex, etc. Since these problems have been dis-

i 

* As in the case of message protocol, adherence to a 
proposed standard should be encouraged but not made 
mandatory. In any event, the problem at the moment is not 
lack of adherence to a standard, but rather lack of any 
proposed standard. 



430 PROCEEDINGS—FALL JOINT COMPUTER CONFERENCE, 1966 

cussed in detail elsewhere,1 and will also be consid­
ered by other contributors to the present conference, 
no further review will be undertaken here. 

One comment may be in order. Automatic calling 
units (devices which allow computers to place calls 
over common-carrier dial-up networks) are becom­
ing available. These devices allow a computer to 
place a call to a remote computer at the time the 
connection becomes necessary, eliminating the need 
for permanent connections. In fact, if the remote 
computer is to perform a lengthy computation, it 
would be feasible to start the remote program, hang 
up, and have the remote program call back when it 
gets the answer. 

NETWORK EXPERIMENTS 

Work is proceeding on the implementation of an 
experimental network involving the APEX time­
sharing system 2 running on the TX-2 computer at 
MIT Lincoln Laboratory in Lexington, Massachu­
setts, and the time-sharing system running on the 
Q-32/PDP-1 computer complex at System Develop­
ment Corporation in Santa Monica, California.3 Ini­
tially, a 4KC four-wire dial-up system will be used 
with 1200-bit-per-second asynchronous modems. 
The message protocol given in the Appendix will 
be used. In addition, a special display language is 
being developed, and suitable monitor changes are 
planned, so that display programs can also be used 
remotely. 

As soon as possible, a series of demonstrations 
and experiments will be performed using the experi­
mental network. The experience gained will be re­
ported at the conference. If the outcome of the ex­
periments supports the validity of the concepts, it is 
hoped that other time-sharing installations will join 
the experimental network. 

APPENDIX 

MESSAGE PROTOCOL FOR TX-2/Q-32 LINK 

This Appendix describes the message protocol for 
use with the link between the Q-32 at System Devel­
opment Corporation in Santa Monica, California, 
and the TX-2 at Lincoln Laboratory in Lexington, 
Massachusetts. 

Each character consists of eight data-bits, sent 
least significant bit first, preceded by a zero start bit 
and followed by a one stop bit. When not transmit-

Table 1. Special Characters for Message Protocol 

Octal 

HEADER 
201 
202 
221 
232 

END OF MESSAGE 
203 

ACKNOWLEDGMENT 
225 
234 
206 

QUERY 
230 

SYNCHRONIZATION 
226 

SPECIAL FUNCTIONS 
220 
233 

ASCII 

SOH 
STX 
DC1 
SS 

ETX 

NACK 
FS 
ACK 

CNCL 

SYNC 

DLE 
ESC 

Meaning 

characters for monitor 
characters for user 
data for monitor 
data for user 

end of message 

message in error, repeat 
message OK, but wait 
message OK, send next 

message 

resend last acknowl­
edgment 

ignore 

help/break 
panic. 

ting a character, the link transmits a one contin­
uously. 

All information transmitted is sent in the form of 
messages consisting of a header character, body, 
end-of-message character, and a checksum. All mes­
sages are acknowledged. 

There are four types of messages. Each has a 
unique header character that determines both the 
destination of the message (user or monitor) and 
the mode of the message (character string or binary 
data). The specific characters used are listed in Ta­
b i d . 

The body of the message has a maximum length 
of 119 characters if the message is a character string 
and 118 characters if the message is binary data. If 
the message consists of binary data, the first char­
acter of the body is a count character equal to the 
total number of characters in the body including the 
count character. Two through 118 are legal values. 

The body of the message is followed by an end-
of-message character. This is immediately followed 
by a checksum—the 8-bit ring-sum of the header 
character and all the characters in the body. 

A message is acknowledged by sending one of 
three characters. One indicates an error, requesting 
retransmission. The second indicates that the mes­
sage was received correctly, but requests that the 
transmitter wait before sending the next message, as 
the receiver buffers are full. The third type of ac-



COMMUNICATIONS NETWORK TO TIE TOGETHER EXISTING COMPUTERS 431 

knowledgment indicates that the last message was 
received correctly and/or that the receiver is ready 
for the next message. 

There are four other special characters. The first 
—query—requests the receiver to resend the'last ac­
knowledgment character that it sent, or to indicate 
an error if it is currently receiving a message or has 
received garbage since the last correct message. 

The second—sync—will be used by another (syn­
chronous) link attached to TX-2. As far as the 
SDC/TX-2 link is concerned, sync characters are 
ignored. 

The other two—help and panic—are both treated 
as a break at SDC or help request at Lincoln. Even­
tually panic will be used for a higher-level interrupt 
at Lincoln. 

As described herein, the system is capable of 
transmitting and receiving messages simultaneously. 
To speed up text transmission, acknowledgments 
and queries may be interjected in the middle of 
character strings (not binary data) as the receiver 
will always be looking for special characters when in 
the character mode. Interjected characters are not 
included in the checksum. 

Since SDC desires not to transmit and receive si­
multaneously, programs using this system should be 
arranged to alternate messages or groups of mes­
sages. 

To avoid "hung" conditions, the transmitter is re­
sponsible for getting the message through and ac­
knowledged. If the transmitter does not receive an 
expected acknowledgment within one second, a 
query is sent to see if the message or acknowl­
edgment was lost. Similarly, if a ready condition 
(ACK) is not received within 30 seconds of a 
"wait" (FS), a query is sent to determine if the 
ready was lost. 

All special characters have the high order bit set 
to one. This leaves all 128 characters whose high 

order bit is a zero available to transmit the full 7-bit 
ASCII code in the character mode. Care must be 
exercised by programs using this system, since it is 
possible to send characters that could not originate 
from a teletype. When in the character mode, char­
acters whose high order bit is a one are ignored if 
they are not special characters. 

ACKNOWLEDGMENTS 

The authors wish to thank the many individuals 
who have generously taken the time to discuss com­
puter networks with them: at System Development 
Corporation, C. Fox, D. Kemper, L. Gallenson, J. 
Schwartz, R. von Buelow, C. Weissman; at MIT 
Project MAC, S. Dunton, D. Edwards, R. Stotz; at 
Lincoln Laboratory, J. Forgie, K. Konkle, J. Mit­
chell, J. Raff el; at Computer Corporation of Ameri­
ca, W. Mann, H. Murray. In addition, the people at 
System Development Corporation, Lincoln Labora­
tory, and Computer Corporation of America are 
participating in setting up the experimental network, 
and their cooperation is very much appreciated. 

REFERENCES 

1. T. Marill, "A Cooperative Network of Time-
Sharing Computers: Preliminary Study," Technical 
Report No. 11, Computer Corporation of America, 
Cambridge, Mass. (1966). 

2. J. W. Forgie, "A Time- and Memory-Sharing 
Executive Program for Quick-Response On-Line 
Applications," Proc. Fall Joint Computer Con]., vol. 
27, part 1, Spartan Books, Washington, D.C., 
1965, pp. 599-609. 

3. J. I. Schwartz, E. G. Coffman, and C. Weiss-
man, "A General-Purpose Time-Sharing System," 
Document SP-1499, System Development Corpora­
tion, Santa Monica, Calif. (1964). 






